Умозаключения. Виды умозаключений

Большую часть знаний об окружающей нас действительности мы получаем с помощью рассуждений. Выводы в них будут истинными, если они являются результатами правильных рассуждений. Правильными рассуждениями считают рассуждения, построенные по правилам логики. Учителю нужны знания о тех правилах, в соответствии с которыми строятся правильные рассуждения. Рассуждения лежат в основе доказательств, без которых трудно представить математику.

В логике наряду с термином «рассуждение» используется термин «умозаключение».

Умозаключением (рассуждением) называется логическая операция, в результате которой получают новое знание на основе некоторого имеющегося знания или из некоторых утверждений А 1, А 2, А 3, А 4 … А n (n > 1) получают новое по отношению к исходным, утверждение В.

Умозаключение состоит из посылок и заключения .

Посылки умозаключения – это исходные утверждения, а заключением называется новое утверждение, т.е. утверждение, содержащее новое знание.

В логике принято указывать вначале посылки, а потом заключение, но в конкретном умозаключении их порядок может быть произвольным: вначале заключение – потом посылки; заключение может находиться между посылками.

Пример 1. Из двух утверждений «Все жидкости упруги» и «Вода – жидкость», можно получить новое утверждение следующим образом: «Все жидкости упруги. Вода – жидкость, значит, вода упруга». Здесь исходные утверждения «Все жидкости упруги» и «Вода – жидкость» являются посылками, а новое утверждение «Вода упруга» является заключением умозаключения.

Рассмотрим примеры умозаключений, которые выполняют младшие школьники при изучении математики.

Пример 2. Ученику предлагается объяснить, почему число 35 можно представить в виде суммы 30 и 5. Он рассуждает: «Число 23 – двухзначное. Любое двухзначное число можно представить в виде суммы разрядных слагаемых. Следовательно, 35=30+5».

В этом умозаключении первое и второе предложения – посылки, причем первая – частная (характеризует только 35), а вторая – общего характера; заключение – это часть предложения, которая стоит после слова «следовательно», причем заключение носит частный характер.

Пример 3. Один из приемов ознакомления с переместительным свойством умножения заключается в следующем. Используя различные средства наглядности, школьники вместе с учителем устанавливают, что, например, 2∙5=5∙2, 6∙3=3∙6, 4∙7=7∙4. А затем на основе полученных равенств делают вывод: для всех натуральных чисел а и в верно равенство а∙в =в∙а .

В данном умозаключении посылками являются первые три равенства, в которых утверждается, что для конкретных натуральных чисел выполняется такое свойство, т.е. посылки будут частными. Заключением является утверждение общего характера – сделанный вывод.

Как видно из рассмотренных примеров, умозаключения бывают разные. В примерах 1 и 2 заключение логически следует из посылок, и мы не сомневаемся в его истинности.

В зависимости от того, существует ли между посылками и заключением отношение логического следования, выделяют два вида умозаключений: дедуктивные (лат. слово «deduction» означает «выведение »), которые в логике считают правильными и недедуктивные (неправильные) .

Дедуктивным умозаключением называется умозаключение, в котором посылки и заключение находятся в отношении логического следования, т.е. во всех случаях, когда посылки истинны, заключение тоже истинно.

Если посылки умозаключения обозначить буквами А 1 ,А 2 ,... А n , а заключение - буквой В, то схематично умозаключение можно представить в виде: А 1 ,А 2 ,...А n ⇒В.

Используют в логике и такую запись . Черта в данной записи заменяет слово «следовательно» («значит»).

В дедуктивном умозаключении из истинных посылок всегда следует истинное заключение. К дедуктивным умозаключениям относятся, например, следующие:

Пример 4. «Если идет дождь, то земля становится мокрой. Идет дождь. Следовательно, земля мокрая».

Пример 5. . Пример 6. .

Пример 7. Если х ∶2, то х - четное число. Число 2002∶2 .

Число 2002 - четное.

Пример 8. Если х ∶9, то х ∶3. Число 122 не делится на 3.

Число 122 не делится на 9.

Правильность умозаключения определяется его формой, а не истинностью входящих в него утверждений. При анализе правильности умозаключения необходимо помнить о том, что нельзя отождествлять правильность умозаключения с истинностью полученного вывода. В логике существуют правила, соблюдая которые, можно строить дедуктивные умозаключения. Эти правила называют правилами вывода или схемами дедуктивных умозаключений .

Наиболее часто встречаются следующие схемы дедуктивных умозаключений:

1. А(х )⇒В(х ), А(а ) - правило заключения ;

В(а )

2. А(х )⇒В(х ), В(а ) - правило отрицания ;

А(а )

3. А(х )⇒В(х ), В(х )⇒С(х ) - правило силлогизма .

А(х )⇒С(х )

В рассмотренных примерах 4 и 7 умозаключение построено по правилу заключения, в примерах 5 и 6 – по правилу силлогизма, в примере 8 – по правилу отрицания, значит все они дедуктивные умозаключения.

Приведем примеры умозаключений (рассуждений).

1) Нетрудно убедиться в истинности следующих высказываний:

3 + 2 < 3 · 2 (А 1),

4 + 3 < 4 · 3 (А 2),

7 + 5 < 7 · 5 (А 3).

На их основе можно сделать вывод (В): сумма двух любых натуральных чисел всегда меньше их произведения.

2) Если число х при счете называют раньше числа у, то х меньше у (А 1). Число 7 называют при счете раньше числа 8 (А 2). Следовательно, 7 < 8 (В).

Правильно строить дедуктивные умозаключения, анализировать их помогают правила логики:

Утверждение А (х ) Þ В (х ) называют общей посылкой, А (а ) – частной посылкой, В (а ) – заключением. По этому правилу выполнено умозаключение в примере 2.

Приведем пример использования этого правила в работе с дошкольниками.

Имеется одинаковое число чашек и блюдец.

Задание ребенку: «Покажи, что чашек столько же, сколько блюдец».

Рассуждения ребенка: «Поставим на каждое блюдце чашку».

Приведем пример умозаключения по этому правилу:

Рассмотрим пример использования правила отрицания в работе с дошкольниками.

Имеется несколько чашек и блюдец.

Задание ребенку: «Установи, поровну ли чашек и блюдец».

Рассуждения ребенка: «На одном блюдце нет чашки, значит блюдец больше, чем чашек».

Ошибки в рассуждениях, неправильные чертежи, неумение использовать теоремы и формулы приводят к ложному заключению.

Математики стали специально придумывать умышленно неправильные рассуждения, имеющие видимость правильного. Такие рассуждения называются софизмы. Разбор софизмов формирует умение правильно рассуждать, помогает усваивать многие математические факты.

Верно ли равенство? 25 + 35 – 60 = 30 + 42 – 72

Вынесем общий множитель за скобку. 5 · (5 + 7 – 12) = 6 · (5 + 7 – 12)

Разделим правую и левую часть 5 = 6

равенства на выражение в скобках.

Где ошибка? На 0 делить нельзя!

Существуют умозаключения, отличные от дедуктивных. Примером таких умозаключений могут быть неполная индукция и аналогия.

Неполная индукция – это умозаключение, при котором на основании того, что некоторые объекты совокупности обладают определенным свойством, делается вывод, что этим свойством обладают все объекты этой совокупности.

Примером неполной индукции является умозаключение в примере 1. Выводы в таких умозаключениях могут быть как истинными, так и ложными. В примере 1 заключение ложное.

Чтобы в этом убедиться, достаточно привести контрпример:

числа 3 и 1 – натуральные, 3 + 1 = 4, 3 · 1 = 3, 4 не меньше 3, т.е. нашлись два натуральных числа, сумма которых не меньше их произведения.

Рассмотрим еще один пример использования неполной индукции. Известно, что 15 делится на 5, 25 делится на 5, 35 делится на 5. Следовательно, можно утверждать, что любое число, запись которого оканчивается цифрой5, делится на 5. В данном случае заключение истинно – нам известен признак делимости на 5.

Выводы, получаемые при неполной индукции носит характер предположения, гипотезы. Их надо доказывать или опровергать.

Велика роль неполной индукции как способа получения общего знания, как способ открытия закономерностей, правил. Использование неполной индукции в обучении способствует развитию умений сравнивать, обобщать, делать выводы.

Приведем пример использования неполной индукции в работе с дошкольниками:

Наглядный материал: «Чудесный мешочек» с объемными геометрическими фигурами.

Задание ребенку: «Достань одну фигуру и назови».

Варианты ответов: - шар,

Здесь, наверное, все шары.

Иногда при обучении дошкольников используют вывод по аналогии , при котором осуществляют перенос знаний с изученного объекта на другой, менее изученный объект.

1) «У четырехугольника 4 угла и 4 стороны, следовательно у пятиугольника 5 углов и 5 сторон».

2) «Если треугольник разделит пополам,

получится два треугольника, следовательно,

если квадрат разделить пополам получится

два квадрата» (рис. 10). Рис. 9

Выводы полученные по аналогии могут быть истинными или ложными, их надо доказывать дедуктивным способом или опровергать контрпримером. Аналогия важна тем, что наводит нас на догадки, способствует развитию математической интуиции.

Задание 1. Назовите существенные свойства А В

Фигуры, изображенной на рисунке 2.

«Умозаключение» в логике 1. Умозаключение как форма мышления, его логическая структура и виды.

Умозаключение – это форма мышления, посредством которой из одного или нескольких суждений, связанных между собой, с логической необходимостью получается новое суждение. Суждения, из которых выводится новое суждение, называются посылками умозаключения. Новое суждение называется заключением. Связь между посылками и заключением называется выводом.

При анализе умозаключения посылки и заключение принято записывать отдельно, друг под другом. Заключение записывается под горизонтальной чертой, отделяющей его от посылок.

В процессе рассуждения мы можем получить новое знание при соблюдении двух условий:

Должны быть истинными исходные сужденияпосылки.

В процессе рассуждения должны быть соблюдены правила вывода, которыеобуславливаютлогическуюправильностьумозаключения.

Как и любая другая форма мышления, умозаключение так или иначе воплощается в языке. Если понятие выражается отдельным словом (или словосочетанием), суждение - отдельнымпредложением,тоумозаключениевсегда есть связь нескольких предложений.

По характеру связи между знанием, выраженным в посылках и заключении:

Дедуктивные . . Индуктивные . . Умозаключения по аналогии.

2.Дедуктивныеумозаключения,ихвиды

Правила дедуктивного вывода определяются характером посылок, которые могут быть простыми или сложными суждениями, а также их количеством. В зависимости от количества используемых посылок дедуктивныеумозаключенияподразделяютсянанепосредственныеиопосредованные.

Непосредственные умозаключения - это такие умозаключения, в которых вывод осуществляется из одной посылки путем ее преобразований: превращения, обращения, противопоставления предикату и по логическому квадрату. Выводы в каждом из этих умозаключений получаются в соответствии с логическими правилами, которые обусловлены видом сужденияегоколичественнымиикачественнымихарактеристиками.

Превращение - это преобразование суждения, при котором изменяется качество посылки без изменения ее количества. Оно осуществляется двумя способами:

Путем двойного отрицания, которое ставится перед связкой и передпредикатом, например: «Все суждения - предложения», «Ни одно суждение не является не предложением».

Путем переноса отрицания с предиката на связку, например:

«Некоторые наши мечты - нереальны», «Некоторые наши мечты не являютсяреальными». Превращатьможновсечетыревидасуждений:

Обращение - это преобразование суждения, в результате которого субъект исходного суждения становиться предикатом, а предикат -субъектом. Обращение подчиняется правилу: термин, не распределенный в посылке,неможетбыть распределени взаключении.

Простым или чистым называется обращение без изменения количества суждения. Так обращаются суждения, оба термина которых, распределены или оба не распределены,например,«Некоторыеписатели-женщины», «Некоторые женщины - писатели».

Если же предикат исходного суждения не распределен, то он не будет распределен и в заключении, где он становится субъектом, то есть его объем ограничивается. Такое обращениеназываетсяобращениемсограничением ,например, «Все футболисты суть спортсмены», «Некоторые спортсмены суть футболисты».

Всоответствиисэтим,сужденияобращаютсяследующимобразом: Частноотрицательныесужденияобращению неподлежат.

Противопоставление предикату - это преобразование суждения, в результате которого субъектом становится понятие, противоречащее предикату исходного суждения, а предикатом-субъектисходногосуждения.Данный вид умозаключения являет собой результат одновременного превращения и обращения.

Например: все адвокаты имеют юридическое образование; ни один не имеющий юридического образования - не адвокат. Из частноутвердительных суждений необходимого вывода неследует.

Умозаключение по логическому квадрату - это такой вид умозаключения, который позволяет получать выводы, учитывая правила соотношений истинности-ложностимеждукатегорическимисуждениями.НапримерданосуждениеА «Всеучастникисеминара- юристы».Из него следуют:

Е «Ниодинучастниксеминаранеявляетсяюристом»I «Некоторыеучастникисеминара -юристы»О «Некоторыеучастникисеминаранеявляютсяюристами»

Из истинности общего суждения следует истинность частного, подчиненного ему суждения (из истинности А следует истинность I, из истинности Е следует истинность О). Что касается противоречивых суждений,тоониподчиняютсязаконуисключенноготретьего:еслиодноизних истинно, то другое обязательно ложно.

Кроме непосредственных умозаключений, о которых речь шла в предыдущем параграфе, в формальной логике выделяют опосредованные умозаключения . Это такие умозаключения, в которых вывод следует из двух или нескольких суждений, логически связанных между собой. Различаютнескольковидовопосредованныхумозаключений:

Категорический силлогизм (от греч. слова «syllogismos» -сосчитывание) – это такой вид дедуктивного умозаключения, в котором из двух истинных категорических суждений, связанных одним термином, получается третье суждение – вывод. Например:

Все, кто любит живопись, часто посещают картинные галереи Мой друг любит живопись Мой друг часто посещает картинные галереи Все силлогизмы – умозаключения Это высказывание – силлогизм Это высказывание – умозаключение

Понятия, входящие в состав силлогизма называются терминами силлогизма. Различают меньший, больший и средний термины. Меньший термин – это понятие, которое в заключении является субъектом. Больший термин – это понятие, которое в заключении является предикатом. Посылка, в которую входит больший термин, называется большей посылкой; посылка с меньшим термином – меньшая посылка. Понятие, посредством которого устанавливается связь между большим и меньшим термином, называется средним термином и обозначается буквой «М » (от лат. medius – средний).

Разновидности форм силлогизма, различаемые по положению среднего термина в посылках, называют фигурами силлогизма . Различают четыре фигуры: Первая фигура . Средний термин занимает место субъекта в большей посылке и место предиката в меньшей.

Правила первой фигуры: меньшая посылка – утвердительное суждение, большая посылка – общее суждение

Вторая фигура . Средний термин занимает место предиката в обеих посылках.

Правила второй фигуры: одна их посылок – отрицательное суждениебольшая посылка

общее суждение

Третья фигура . Средний термин занимает место субъекта в обеих посылках.

Правила третье фигуры: меньшая посылка – утвердительное суждение заключение – частное суждение.

Четвертая фигура . Средний термин занимает место предиката в большей посылке и место субъекта в меньшей посылке.

Правила четвертой фигуры: если большая посылка утвердительная, то меньшая – общее суждение; если одна из посылок отрицательная, то большая - общее суждение; заключение – отрицательное суждение.

Необходимый характер вывода в простом категорическом силлогизме обеспечивается соблюдением общих правил:

Правила терминов

Пример ошибки

Примечание

В силлогизме должно быть

Знания – ценность Ценность хранят в

При нарушении этого правила возникает ошибка

только три термина: больший,

«учетверение термина»: один из терминов

средний и меньший

Знания хранят в сейфе

употребляется в двух значениях.

термин должен

Некоторые растения

Если средний термин не распределен ни в одной

быть распределен хотя бы в одной

из посылок, то отношение между крайними

из посылок

Малина – растение _

терминами в заключении остается

Малина – ядовита

неопределенным.

Термин, нераспределенный в

Все фермеры трудолюбивы Иванов не

При нарушении этого правила может возникнуть

посылках, не может быть

фермер _

ошибка «незаконное расширение термина»

распределен и в заключении

Иванов не трудолюбив

Правила посылок

Пример ошибки

Примечание

Из двух частных посылок вывод

Некоторые звери дикие

Одна из посылок должна быть общей

сделать нельзя

Некоторые живые существа – звери

Если одна из посылок – частное

Все слоны имеют хобот

Из этих посылок общий вывод невозможен.

суждение, то и вывод будет частным

Некоторые животные – слоны

Нельзя утверждать, что все животные имеют

Некоторые животные имеют хобот

Из двух отрицательных посылок

Бухгалтер – не дантист

В таком случае все термины исключают друг друга

вывод сделать нельзя

Экскурсовод – не бухгалтер

Если одна из посылок –

Все гейзеры – горячие источники

отрицательное суждение, то и вывод

Этот источник не является горячим

будет отрицательным

Этот источник – не гейзер

Посылками силлогизма могут быть суждения, различные по качеству и количеству. В этой связи различают модусы простого категорического силлогизма.

Всего правильных модусов в четырех фигурах 19.

фигура имеет следующие правильные модусы: ААА, ЕАЕ, АII, ЕIО

II фигура имеет следующие правильные модусы: АЕЕ, АОО, ЕАЕ, ЕIО

III фигура имеет следующие правильные модусы: ААI, ЕАО, IАI, ОАО, АII, ЕIО IV фигура имеет следующие правильные модусы: ААI, АЕЕ, IАI, ЕАО, ЕIО

Знание модусов дает возможность определить форму истинного заключения, когда даны посылки и известно, какова фигура данного силлогизма.

4. Сложные, сокращенные и сложносокращенные силлогизмы

Умозаключения строятся не только из простых, но и из сложных суждений. Особенность этих умозаключений в том, что выведение заключения из посылок определяется не отношением между терминами, а характером логической связи между суждениями.

Условное умозаключение – это такой вид опосредованного дедуктивного умозаключения, в котором, по крайней мере, одна из посылок – условное суждение. Выделяют чисто условные и условно-категорические умозаключения.

Чисто условным называется умозаключение, в котором обе посылки и заключение – условные суждения. Его структура такова: Если а, то в Если в, то с

два правильных модуса:

Утверждающий модус

Отрицающий модус

Его структура такова: Если а, то b

Разделительные умозаключения - это такой вид умозаключений, в котором одна или несколько из посылок - разделительные суждения. Различают чисто разделительное, разделительно-категорические и условно-разделительные умозаключения.

Чисто разделительное умозаключение - это умозаключение, в котором обе посылки - разделительные суждения. Его структура такова: S есть А, или В, или С А есть или А1 , или А2

S есть или А1 , или А2 , или В, или С

Разделительно-категорическое умозаключение - это умозаключение, в котором одна из посылок разделительное, а другая посылка и заключение - категорические суждения. Этот вид умозаключения содержит два модуса:

Утверждающе-отрицающий модус.

Например:

Писатели бывают поэтами, прозаиками или публицистами Этот писательпрозаик Этот писатель не является ни поэтом, ни публицистом

Отрицающе-утверждающий модус.

Например:

При зубной боли я принимаю обезболивающее или полощу рот содовым раствором

У меня болит зуб, но нет возможности прополоскать рот

Я приму обезболивающее

Условно-разделительное умозаключение - это умозаключение, в котором одна посылка состоит из двух или более условных суждений, а другая является разделительным суждением. По количеству альтернатив условной посылки различают дилеммы (если разделительная посылка содержит два члена), трилеммы (если разделительная посылка содержит три члена) и полилеммы (если число разделительных членов больше трех).

Умозаключение – форма мышления, в которой из одного или нескольких

суждений (называемых посылками ) выводится новое суждение –заключение

По составу все умозаключения делятся на простые и сложные. Простыми называются умозаключения, элементы которых не являются умозаключениями. Сложными называют умозаключения, состоящие из двух или более простых умозаключений.

По количеству посылок умозаключения делятся на непосредственные (из одной посылки) и опосредованные (из двух и более посылок).

Дедуктивное умозаключение - умозаключение, в котором переход от общего знания к частному является логически необходимым.

Путем дедукции получаются достоверные выводы: если истинны посылки, то будут истинны и заключения.

Если человек совершил преступление, то он должен быть наказан.

Петров совершил преступление.

Петров должен быть наказан.

Индуктивное умозаключение - умозаключение, в котором переход от частного знания к общему осуществляется с большей или меньшей степенью правдоподобности (вероятности).

Например:

Кража - уголовное преступление.

Грабеж - уголовное преступление.

Разбой - уголовное преступление.

Мошенничество - уголовное преступление.

Кража, грабеж, разбой, мошенничество - преступления против собственности.

Следовательно, все преступления против собственности – уголовные преступления.

Правильность умозаключения.

Рассмотрим умозаключения, содержащие две и более посылок. Умоза-

ключение является логически правильным , если из истинности всех его по-

сылок следует истинность заключения.

Умозаключение логически неправильно , если при истинности всех его

посылок заключение может быть как истинным, так и ложным.

Правильность умозаключения проверяется с помощьютаблиц истинно-

сти или, в том случае если посылок много,индуктивным методом .

Общая схема проверки

Запишем формулу каждой Посылки (П) и Заключения.

Оформим задачу в виде схемы

Запишем конъюнкцию посылок Посылка 1 ^Посылка 2 .

Строим таблицу истинности.

Исследуем строки, где Посылка 1 ^Посылка 2 = 1 . Если во всех этих стро-

ках Заключение = 1 , то умозаключениелогически правильно . Если встреча-

ется строка, в которой Заключение = 0, то умозаключение логически непра-

вильно .

Пример 1. Проверить правильность умозаключения.«Если предмет интере-

сен, он полезен. Предмет неинтересен, значит , он бесполезен ».

В этом примере две посылки. П1: «Если предмет интересен, он полезен», П2:

«Предмет неинтересен».

Заключение располагается после слов «значит» , «следовательно» и т.п. В дан-

ном случае Заключение: «Он (Предмет) бесполезен ».

Составим формулы посылок и заключения. Введем простые суждения: Х

"предмет интересен", У – "предмет полезен".

Формулы П1: X -->Y, П2: Х, Заключение: Y .

Составим схему.

Обе посылки истинны в 3 и 4 строчках, при этом заключение Y = 0 (ложно) в третьей строке и

Y = 1 (истинно) в четвертой строке. По определению умозаключение логически неправильно . Если бы в третьей строке была 1, то умозаключение было бы логически правильным.

ДЕДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ (ЛОГИКА ВЫСКАЗЫВАНИЙ)

В результате освоения данной темы студент должен:

знать

  • – виды высказываний,
  • – структуру и модусы высказываний;

уметь

  • – символически записывать структуру высказываний,
  • – определять модус в умозаключениях;

владеть

навыками практического использования высказываний в профессиональной практике.

Как было отмечено в предыдущей главе, умозаключения образуются из высказываний. Кроме простых высказываний, существуют сложные высказывания. Они подразделяются на условные, разделительные, конъюнктивные и др. Выступая посылками умозаключения, они образуют новые формы мысли – умозаключения из сложных высказываний.

Умозаключения логики высказываний основаны на структуре сложных суждений. Особенность этих умозаключений состоит в том, что вывод заключения из посылок определяется не отношениями между терминами, как это было в простом категорическом силлогизме, а характером логической связи между высказываниями, в силу чего субъектно-предикатная структура посылок не учитывается. Возможность получения умозаключений, рассматриваемых в логике высказываний, мы имеем именно потому, что логические союзы (связки) имеют строго определенный смысл, который задастся таблицами истинности (см. в разделе "Сложные суждения и их виды"). Именно поэтому можно сказать, что умозаключения логики высказываний – это умозаключения, которые основаны на смысле логических союзов.

Умозаключение процесс выведения некоторого высказывания из одного или нескольких других высказываний. Выводимое высказывание называется заключением, а те высказывания, из которых выводится заключение, называются посылками.

Принято выделять следующие умозаключения:

  • – 1) чисто условные умозаключения;
  • – 2) условно-категорические умозаключения;
  • – 3) чисто разделительные умозаключения;
  • – 4) разделительно-категорические умозаключения;
  • – 5) условно-разделительные умозаключения.

Данные виды умозаключений называются прямыми умозаключениями и будут рассмотрены в данной главе.

К умозаключениям логики высказываний также относятся:

  • а) сведение к абсурду;
  • б) рассуждение от противного;
  • в) рассуждение по случаю.

Эти виды умозаключений в логике называются непрямыми умозаключениями. Они будут рассмотрены в главе "Логические основы аргументации".

Условное умозаключение

Первое знакомство с данными видами умозаключений у некоторых, изучающих логику, создает преждевременное впечатление, что они весьма тривиальны и просты. Но почему же мы так охотно пользуемся ими в процессе общения, а также в ходе познания? Чтобы ответить на этот вопрос, приступим к анализу этих видов умозаключений, для чего нам понадобятся следующие исходные определения.

Умозаключение, в котором по крайней мере одна из посылок – условное высказывание, называется условным.

Различают чисто условное и условно категорическое умозаключение.

Чисто условное умозаключение. Умозаключение, в котором обе посылки и заключение являются условными высказываниями, называют чисто условным.

Чисто условное умозаключение имеет следующую структуру:

Символическая запись:

Заключение в условном умозаключении может быть получено не только из двух, но и из большего числа посылок. Такие умозаключения в символической логике принимают следующий вид:

Правильные модусы чисто условного умозаключения:

Пример .

q) Если бензин подорожает (р),

то цены на продукты вырастут (q)

(q r ) Если же цены на продукты вырастут (q),

r )

r) Если бензин подорожает (p ),

то уровень жизни населения понизится (r )

Вывод в чисто условных умозаключениях регулируется следующим правилом : следствие следствия есть следствие основания.

Условно-категорическое умозаключение. Умозаключение, в котором одна из посылок – условное высказывание, а другая посылка и заключение – категорические высказывания, называется условно-категорическим.

Разновидность условно-категорического умозаключения, в котором ход рассуждения направлен от утверждения основания к утверждению следствия (т.е. от признания истинности основания к признанию истинности следствия), называется утверждающим модусом (modus ponens).

Символическая запись утверждающего модуса условно-категорического умозаключения:

Пример .

Если этот металл – натрий (р), то он легче воды (q)

Данный металл натрий (р)

Данный металл легче воды (q)

Этой схеме соответствует формула (1): (p → q) ∩ p) → q . которая является тождественно истинной, т.е. рассуждение по данному модусу всегда дает достоверное заключение.

Проверить правильность утверждающего модуса можно при помощи табл. 9.1, позволяющей установить, имеется ли отношение логического следования между посылками и заключением.

Таблица 9.1

(p → q) ∩ p)

(p → q) ∩ p) → q

Мы видим, что в таблице нет такого случая, когда посылка истинна, а заключение ложно, следовательно, между ними имеется отношение логического следования.

Согласно этой схеме, можно самостоятельно придумать множество примеров:

Если ты придешь ко мне на свидание, то я куплю тебе мороженое

Ты пришла на свидание

Следовательно, я куплю тебе мороженое

Или, например:

Если ты меня любишь, то я этого заслуживаю

Ты меня любишь

Следовательно, я этого заслуживаю

Возникает вполне закономерный вопрос: почему этот вид умозаключения так часто используется в процессе поиска истинны. Дело в том, что данный вид умозаключения является самым удобным средством доказательства тех суждений, которые нам необходимо обосновать.

Он нам показывает:

  • 1) для того чтобы доказать высказывание q, следует найти такое высказывание p , которое было бы не только истинным, но и составленная из них импликация р → q, также была бы истинной;
  • 2) высказывание р должно быть достаточным основанием для истинности q.

Но вполне очевидно из структуры данного умозаключения, что изолированное высказывание р не может быть достаточным основанием, а должно являться условием для q, т.е. связанно с ним имиликативно р q ;

3) данный вид умозаключения показывает, что modus ponens является частным случаем закона достаточного основания.

Допустим, нам требуется доказать, что сегодня снег на улице тает. Достаточным основанием для этого служит тот факт, что сегодня на улице температура выше нуля градусов. По для того, чтобы полностью обосновать доказываемое положение, нам еще необходимо связать эти два высказывания с помощью импликации: "Если температура на улице выше нуля градусов, то снег тает", приведя это утверждение к логической форме, мы получим выражение (p → q) ∩ p) → q, мы узнаем в нем утверждающий модус или другое его название "от утверждения основания к утверждению следствия".

Правильный утверждающий модус необходимо отличать от неправильного, в котором ход мысли направлен от утверждения следствия к утверждению основания. В этом случае вывод не следует с необходимостью.

Пример .

Если у человека высокая температура (р). то он болен (q)

Человек – болен (q)

Человек имеет высокую температуру (р)

Если мы построим схему данного умозаключения, то она будет выглядеть следующим образом: (p → q) ∩ q) → p .

Проверим с помощью табл. 9.2, имеет ли в данном случае отношение логического следования.

Таблица 9.2

(p → q) ∩ p)

(p → q) ∩ p) → q

Из таблицы видно, что в третьей строке посылки являются истинными, а заключение оказалось ложным, следовательно, заключение логически не следует из посылок.

Вторым правильным модусом условно-категорического умозаключения является отрицающий (modus ponens), по которому ход рассуждения направлен от отрицания следствия к отрицанию основания, т.е. из ложности следствия условной посылки всегда с необходимостью следует ложность основания.

Этот модус имеет следующую схему:

Пример .

Если бы Лжедмитрий I был учеником иезуитов (р), то он хорошо бы знал латынь (q)

Неверно, что Лжедмитрий I хорошо знал латынь (q)

Следовательно, Лжедмитрий I не был учеником иезуитов (┐р)

Формула (2): (p → q) ∩ ┐p) → ┐p – также является законом логики.

Проверим данное умозаключение с помощью таблицы истинности обозначив, через р – "Лжедмитрий I был учеником иезуитов", q – "Лжедмитрий I хорошо знал латынь". Получим следующую формулу:

Как видно из табл. 9.3, отношение логического следования имеет место, т.е. данный модус обеспечивает нам достоверное заключение.

Таблица 9.3

Контрпример . В качестве контрпримера рассмотрим следующее умозаключение, которым часто пользуются на практике врачи:

Если у человека повышена температура (р), то он болен (q)

У этого человека температура не повышена (p)

Следовательно, он не болен (┐q)

Проверим истинность данного умозаключения с помощью таблицы истинности для следующей формулы ((р → q) ∩ ┐p ) → ┐q. Здесь в третьей строке (табл. 9.4) высказывание ((р → q) ∩ ┐p ) истинно, а высказывание ┐q ложно. Значит, между ними нет отношения логического следования, а это означает, что данное умозаключение неправильно.

Таблица 9.4

(p→q)∩┐p)

((p→q)∩┐p)→┐q

Следовательно, условно-категорическое умозаключение может давать не только достоверное заключение, но и вероятностное.

Выводы от отрицания основания к отрицанию следствия и от утверждения следствия к утверждению основания с необходимостью не следуют. Эти выводы могут быть ложными.

Формула (3): не является законом логики.

Нельзя получить достоверное заключение, идя от утверждения следствия к утверждению основания.

Например:

Если бухта замерзла (р), то суда не могут входить в бухту (q )

Суда не могут входить в бухту ( q)

Вероятно, бухта замерзла (р)

Формула (4): – не является законом логики.

Нельзя получить достоверное заключение, идя от отрицания основания к отрицанию следствия.

Пример .

Если в воздухе в самолете взорвется радиомина (р),

то он не долетит до места назначения (q )

Самолет не долетел до места назначения ( q)

Обосновать заключение из данных посылок нельзя, так как могут быть и другие причины, такие как вынужденная посадка, посадка на другой аэродром и т.д. Эти умозаключения широко используются в практике познания для подтверждения или опровержения гипотез, в аргументации и ораторской практике.

Правильность вывода по модусам условно-категорических умозаключений регулируется следующим правилом: рассуждение правильно только тогда, когда оно направлено от утверждения оснований к утверждению следствий или от отрицания следствий к отрицанию оснований.

Что такое умозаключение? Это определённая форма мышления и единственно правильно сделанный вывод. Конкретика такова: в процессе познания становится понятно, что утверждения, подсказанные очевидностью, не все являются истиной, а лишь определённая их часть.

Для установления полной истины обычно проводится тщательное расследование: чётко обозначить вопросы, соотнести друг с другом уже установленные истины, дособрать нужные факты, произвести опыты, проверить все попутно возникающие догадки и вывести заключительный результат. Вот оно и будет - умозаключение.

Категорический силлогизм

Дедуктивное категорическое умозаключение - это такое, где из двух истинных суждений следует заключение. Понятия, находящиеся в составе силлогизма, обозначаются терминами. имеет три термина:

  • предикат заключения (P) - больший термин;
  • субъект заключения (S) - меньший термин;
  • связка посылок P и S, отсутствующая в заключении (M) - средний термин.

Формы силлогизма, которые различаются по среднему термину (M) в посылках, называются фигурами в категорическом силлогизме. Существуют четыре таких фигуры, каждая со своими правилами.

  • 1 фигура: общая большая посылка, утвердительная меньшая;
  • 2 фигура: общая большая посылка, отрицательная меньшая;
  • 3 фигура: утвердительная меньшая посылка, частное заключение;
  • 4 фигура: заключение не бывает общеутвердительным суждением.

У каждой фигуры может быть несколько модусов (это разные силлогизмы по качественной и количественной характеристике посылок и заключений). В итоге фигуры силлогизма имеют девятнадцать правильных модусов, каждому из которых присвоено собственное латинское название.

Простой категорический силлогизм: общие правила

Чтобы заключение в силлогизме получилось истинным, нужно пользоваться истинными посылками, чтить правила фигур и простого категорического силлогизма. Методы умозаключения требуют соблюдения следующих правил:

  • Не допускать учетверения терминов, их должно быть только три. Например, движение (M) - вечно (P); хождение в университет (S) - движение (M); заключение ложно: хождение в университет вечно. Средний термин здесь употреблён в разных смыслах: одно - в философском, другое - обиходное.
  • Средний термин обязательно распределяется хотя бы в одной из посылок. Например, все рыбы (P) умеют плавать (M); моя сестра (S) умеет плавать (M); моя сестра - рыба. Вывод ложный.
  • Термин заключения распределяется только после распределения в посылке. Например, во всех заполярных городах - белые ночи; Санкт-Петербург - не заполярный город; в Санкт-Петербурге не бывает белых ночей. Термин заключения содержит больше, чем посылки, больший термин расширился.

Существуют правила употребления посылок, которых требует форма умозаключения, их тоже необходимо соблюдать.

  • Две отрицательные посылки вывода не дают. Например, киты - не рыбы; щуки - не киты. И что?
  • При одной отрицательной посылке обязательно отрицательное заключение.
  • Из двух частных посылок невозможен вывод.
  • При одной частной посылке обязательно частное заключение.

Условные умозаключения

Когда обе посылки - условные суждения, получается чисто условный силлогизм. Например, если А, то Б; если Б, то В; если А, то В. Наглядно: если сложить два то сумма получится чётной; если сумма чётная, то можно делить на два без остатка; следовательно, если сложить два числа нечётных, то можно сумму делить без остатка. Для подобного отношения суждений есть формула: следствие следствия - это следствие основания.

Условно-категорический силлогизм

Что такое умозаключение суждение бывает в первой посылке, а во второй посылке и заключении - категорические суждения. Модус здесь может быть либо утверждающий, либо отрицающий. При утверждающем модусе, если вторая посылка утверждает следствие первой, вывод получится только вероятным. При отрицательном модусе, если отрицается основание условной посылки, вывод тоже получается только вероятным. Таковы условные умозаключения.

  • Не знаешь - молчи. Молчишь - вероятно, не знаешь (если А, то Б; если Б, то, вероятно, А).
  • Если идёт снег, наступила зима. Зима наступила - вероятно, идёт снег.
  • Если солнечно, деревья дают тень. Деревья не дают тень - не солнечно.

Разделительный силлогизм

Умозаключение называется разделительным силлогизмом, если состоит из сугубо разделительных посылок, а вывод тоже получается разделительным суждением. Таким образом увеличивается количество альтернатив.

Ещё большее значение имеет разделительно-категорическое умозаключение, где одна посылка идёт разделительным суждением, а вторая - простым категорическим. Здесь два модуса: утверждающе-отрицательный и отрицающе-утверждающий.

Условно-разделительные

Понятие умозаключения включает в себя и условно-разделительные формы, в которых одна посылка - это два и более условных суждения, а вторая - разделительное суждение. Иначе это называется леммой. Задача леммы - выбор из нескольких решений.

Число альтернатив делит условно-разделительные умозаключения на дилеммы, трилеммы и полилеммы. Количество вариантов (дизъюнкция - использование "или") утвердительных суждений - конструктивная лемма. Если дизъюнкция отрицаний - лемма деструктивная. Если условная посылка даёт одно следствие - лемма простая, если следствия разные - лемма сложная. Это можно проследить, по схеме выстраивая умозаключения.

Примеры будут примерно такими:

  • Простая конструктивная лемма: ab+cb+db= b; a+c+d=b. Если сын пойдёт в гости (а), сделает уроки позже (b); если сын пойдёт в кино (c), то перед этим сделает уроки (b); если сын останется дома (d), будет делать уроки (b). Сын пойдёт в гости или в кино, или дома останется. Уроки он всё равно сделает.
  • Сложная конструктивная: a+b; c+d. Если власть наследственная (a), то государство монархическое (b); если власть выборная (c), государство - республика (d). Власть передают по наследству или избирают. Государство - монархия или республика.

Для чего нам умозаключение, суждение, понятие

Умозаключения не живут сами по себе. Эксперименты не проводятся вслепую. Они имеют смысл только в сочетании. Плюс синтез с теоретическим анализом, где путём сопоставлений, сравнений и обобщений можно сделать выводы. Причём вывести умозаключение по аналогии можно не только о непосредственно воспринятом, но и о том, что "пощупать" невозможно. Как можно непосредственно воспринимать такие процессы, как образование звёзд или развитие жизни на планете? Здесь необходима такая игра ума, как абстрактное мышление.

Понятие

Имеет три основные формы: понятия, суждения и умозаключения. Понятие отражает самые общие, существенные, необходимые и решающие свойства. В нём присутствуют все признаки реальности, хотя иногда реальность лишена наглядности.

Когда образовывается понятие, разум не берёт большую часть индивидуальных или несущественных случайностей в признаках, он обобщает все восприятия и представления как можно большего количества близких по однородности предметов и собирает из этого присущее всем и специфическое.

Понятия - это результаты обобщения данных того или иного опыта. В научных исследованиях они играют одну из главных ролей. Путь изучения любого предмета длинен: от простого и поверхностного к сложному и глубокому. По мере накопления знаний об отдельных свойствах и особенностях предмета появляются и суждения о нём.

Суждение

С углублением знаний происходит совершенствование понятий, и появляются суждения о предметах объективного мира. Это одна из основных форм мышления. Суждения отражают объективные связи предметов и явлений, внутреннее их содержание и все закономерности развития. Любой закон и любое положение в объективном мире можно выразить определённым суждением. Особенную роль играет умозаключение в логике этого процесса.

Явление умозаключения

Особый мыслительный акт, где из предпосылок можно вывести новое суждение о событиях и предметах - свойственная для человечества способность к умозаключениям. Без этой способности невозможно было бы познавать мир. Долгое время нельзя было увидеть земной шар со стороны, но и тогда люди смогли прийти к выводу, что Земля наша круглая. Помогла правильная связь истинных суждений: шарообразные предметы отбрасывают тень в форме круга; Земля накладывает на Луну круглую тень во время затмений; Земля имеет форму шара. Умозаключение по аналогии!

Правильность умозаключений зависит от двух условий: посылки, из которых строится вывод, должны соответствовать действительности; связи посылок должны соображаться с логикой, которая и изучает все законы и формы выстраивания суждений в умозаключении.

Таким образом, понятие, суждение и умозаключение как основная форма абстрактного мышления позволяют человеку познавать объективный мир, раскрывать самые важные, самые существенные стороны, закономерности и связи окружающей действительности.